organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Morpholine– β -iodophenylacetylene (1/1) revisited: an exceptionally short I···N contact

Andrei S. Batsanov* and Judith A. K. Howard

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England

Correspondence e-mail: a.s.batsanov@durham.ac.uk

Received 29 September 1999 Accepted 12 November 1999

The title complex, $C_8H_5I \cdot C_4H_9NO$, has an intermolecular charge-transfer bond $N \cdot \cdot \cdot I$ of 2.712 (2) Å, shorter than supposed earlier and the shortest known so far. Morpholine molecules related by a *b* translation are linked to form a chain by $N-H \cdot \cdot \cdot O$ hydrogen bonds $[N \cdot \cdot \cdot O \ 3.110 \ (3) \ Å]$.

Comment

Morpholine and β -iodophenylacetylene react exothermically to form a stable 1:1 complex, first prepared by Southwick & Kirchner (1962), who suggested the charge-transfer structure, (I), on the strength of spectroscopic evidence. A single-crystal X-ray diffraction study (Baughman, 1964) confirmed structure (I), with a rather short intermolecular N···I contact of *ca* 2.9 Å. However, the accuracy of the structure, determined by Fourier projections, was not high (R = 0.18).

The present study generally confirmed the earlier one, but is of much higher accuracy and at low temperature. Morpholine molecules related by a *b* translation, are linked into a chain by N4-H4···O1 hydrogen bonds [N···O 3.110 (3), N-H 0.93, $H \cdots O 2.19 \text{ Å}, N - H \cdots O 173^{\circ}$]. The heterocycle adopts a chair conformation, with the total puckering amplitude (Cremer & Pople, 1975) $Q_T = 0.550$ (3) Å. The I-C18 bond points directly at the lone electron pair of the N4 atom. The $C11-C17 \equiv C18-I \cdots N4$ chain is practically linear: the maximum displacement from the best weighted least-squares line through it involves N4 which is 0.207 (4) Å from the line. The angle between this chain and the phenyl plane is $1.9 (2)^{\circ}$. The mean planes of the phenyl and morpholine groups form a dihedral angle of 49.9 (5)°. The I···N4 distance [2.712 (2) Å] proved much shorter than that reported by Baughman (2.9 Å), and is by far the closest intermolecular I···N contact known

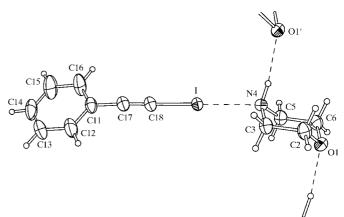


Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids, and the hydrogen bonds and charge-transfer interactions.

(with an I atom covalently bonded to carbon rather than halogen). The shortest such I···N contacts reported before, 2.93–2.95 Å, involved cyano-group nitrogen (Borgen *et al.*, 1962; Imakubo *et al.*, 1995), and the shortest one involving sp^3 nitrogen was 2.99 (3) Å in the urotropine–iodoform complex (Dahl & Hassel, 1970).

The sum of van der Waals radii of I and N is variously estimated as 3.53 (Bondi, 1964), 3.64 (Zefirov & Zorkii, 1989) and 3.67 Å (Rowland & Taylor, 1996) in an isotropic model. The 'shape' of the I atom is in fact anisotropic, with the smallest size along the continuation of the C–I bond, where an I···N van der Waals contact of 3.36 Å can be expected (Nyburg & Faerman, 1985). By any reckoning, the distance in (I) reveals a strong charge-transfer interaction, probably enhanced by high electronegativity of the ethyne group, estimated as 3.1 in Pauling's scale (Batsanov, 1990), *i.e.* exceeding that of Cl (3.0).

Experimental

The title complex was prepared according to the method of Southwick & Kirchner (1962).

Crystal data

$\begin{array}{l} C_8H_5I\cdot C_4H_9NO\\ M_r = 315.14\\ \text{Monoclinic, } P2_1/c\\ a = 8.867 \ (1) \ \text{\AA}\\ b = 4.8579 \ (2) \ \text{\AA}\\ c = 29.390 \ (2) \ \text{\AA}\\ \beta = 96.05 \ (1)^\circ\\ V = 1258.9 \ (2) \ \text{\AA}^3\\ Z = 4 \end{array}$	$D_x = 1.663 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 470 reflections $\theta = 12-23^{\circ}$ $\mu = 2.519 \text{ mm}^{-1}$ T = 150 (2) K Plate, colourless $0.32 \times 0.30 \times 0.12 \text{ mm}$
Data collection	
Siemens SMART 1K CCD area- detector diffractometer ω scans Absorption correction: by integra- tion (<i>XPREP</i> in <i>SHELXTL</i> ; Sheldrick, 1995), before correc- tion $R_{int} = 0.080$ $T_{min} = 0.520$, $T_{max} = 0.752$	10 880 measured reflections 3316 independent reflections 3136 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 29^{\circ}$ $h = -12 \rightarrow 12$ $k = -6 \rightarrow 6$ $l = -39 \rightarrow 30$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.058$ S = 1.295 3316 reflections	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0062P)^{2} + 1.8187P] \text{ where} P = (F_{o}^{2} + 2F_{c}^{2})/3 (\Delta/\sigma)_{\text{max}} = 0.001 \Delta\rho_{\text{max}} = 0.60 \text{ e} \text{ Å}^{-3}$
3316 reflections	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
136 parameters	$\Delta \rho_{\rm min} = -0.83 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

I-C18	2.053 (3)	C3-N4	1.473 (4)
I-N4	2.712 (2)	N4-C5	1.471 (4)
O1-C6	1.429 (4)	C5-C6	1.517 (4)
O1-C2	1.430 (4)	C11-C17	1.438 (4)
C2-C3	1.518 (4)	C17-C18	1.201 (4)
C18-I-N4	177.84 (10)	C5-N4-C3	110.0 (2)
C6-O1-C2	110.8 (2)	C5-N4-I	112.09 (17)
O1-C2-C3	110.5 (2)	C3-N4-I	108.20 (16)
N4-C3-C2	112.1 (2)	C17-C18-I	176.5 (3)

Data collection: *SMART* (Siemens, 1996); cell refinement: *SMART*; data reduction: *SAINT* (Siemens, 1996); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1995); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors would like to thank the Leverhulme Trust for a visiting fellowship (to ASB) and Dr J. A. H. MacBride for supplying crystal samples.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1436). Services for accessing these data are described at the back of the journal.

References

- Batsanov, S. S. (1990). Sov. Sci. Rev. B Chem. Rev. 15, 1-79.
- Baughman, R. H. (1964). J. Org. Chem. 29, 964-965.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Borgen, B., Hassel, O. & Römming, C. (1962). Acta Chem. Scand. 16, 2469–2470.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dahl, T. & Hassel, O. (1970). Acta Chem. Scand. 24, 377–383.
- Imakubo, T., Sawa, H. & Kato, R. (1995). J. Chem. Soc. Chem. Commun. pp. 1667–1668.
- Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.
- Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
- Sheldrick, G. M. (1995). *SHELXTL*. Version 5.04/VMS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Version 4.050. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Southwick, P. L. & Kirchner, J. R. (1962). J. Org. Chem. 27, 3305-3308.
- Zefirov, Yu. V. & Zorkii, P. M. (1989). Russ. Chem. Rev. 58, 421-440.